Sains Malaysiana 53(8)(2024): 1889-1900

http://doi.org/10.17576/jsm-2024-5308-13

 

Induction of Polyploidy in Dalbergia latifolia Roxb. using Oryzalin

(Peinduksian Poliploidi dalam Dalbergia latifolia Roxb. menggunakan Oryzalin)

 

INDIRA RIASTIWI1,2, WITJAKSONO1, ULFAH JUNIARTI SIREGAR3 & DIAH RATNADEWI2,*

 

1Research Center for Applied Botany, Research Organization for Life and Environmental Sciences, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, 16911, West Java, Indonesia

 2Department of Biology, Faculty of Mathematic and Natural Sciences, IPB University, Dramaga Campus, Jl. Raya Dramaga, Bogor, 16680, West Java, Indonesia

 3Department of Silviculture, Faculty of Forestry and Environment, IPB University,

Dramaga Campus, Jl. Raya Dramaga, Bogor, 16680, Indonesia

 

Received: 4 March 2024/Accepted: 17 June 2024

 

Abstract

The demand for rosewood wood keeps increasing, while the availability of large-diameter rosewood trees is becoming scarce. Rosewood is classified as vulnerable by the International Union for Conservation of Nature and Natural Resources (IUCN) and listed in Appendix II of Convention of International Trade of Endangered Species (CITES). The objective of this research was to develop a method to obtain fast-growing and more vigorous rosewood seedlings for quicker harvest through polyploidy induction using oryzalin. This experiment successfully produced tetraploid rosewood through polyploidy induction from seedlings. Polyploidy induction was carried out by soaking rosewood germinated seeds for 12 and 24 h in oryzalin solutions at concentrations of 0, 3.75, 7.5, 15, 30, 45, and 120 µM. The germinated seeds were then planted in a growth medium and maintained for 18 months. Ploidy level identification of those seedlings was conducted using flow cytometry and confirmed with stomata characterizations. Two accessions of tetraploid rosewood were obtained from the treatment of 15 µM oryzalin for 12 and 24 h soaking, while seven mixoploids were obtained by treatment of 12 h at various oryzalin concentrations. Induced tetraploid seedlings had longer stomata but lower stomata density and thicker leaves than their diploid counterparts. Both induced tetraploid and mixoploid rosewood seedlings did not exhibit greater vegetative vigor than their diploids up to 18 months of age. Therefore, oryzalin induced polyploidy, mixoploid and tetraploid, but it did not produce faster growing seedlings or better habitus of rosewood compared to their diploids, at least up to 18 months.

 

Keywords: Mixoploid; polyploidy; rosewood; seedling; tetraploid; vulnerable plant

 

Abstract

Permintaan terhadap kayu rosewood terus meningkat, sementara ketersediaan pokok rosewood berdiameter besar semakin berkurangan. Rosewood dikelaskan sebagai rentan oleh Kesatuan Antarabangsa untuk Pemuliharaan Alam Semula Jadi dan Sumber Daya (IUCN) dan disenaraikan dalam Lampiran II Konvensyen Perdagangan Antarabangsa Spesies Terancam (CITES). Oleh itu, perdagangannya dihadkan oleh kuota. Justeru, campur tangan teknologi diperlukan untuk menghasilkan anak benih rosewood yang cepat tumbuh untuk penuaian yang lebih cepat. Objektif penyelidikan ini adalah untuk membangunkan dan mendapatkan anak benih rosewood yang cepat tumbuh dan lebih vigor melalui induksi poliploidi menggunakan oryzalin. Uji kaji ini berjaya menghasilkan tetraploid rosewood melalui induksi poliploidi daripada anak benih. Induksi poliploidi dilakukan dengan merendam anak benih rosewood selama 12 dan 24 jam dalam larutan oryzalin pada kepekatan 0, 3.75, 7.5, 15, 30, 45 dan 120 µM. Anak benih kemudian ditanam dalam medium pertumbuhan dan dipelihara selama 18 bulan. Pengenalpastian tahap ploidi anak benih dilakukan menggunakan sitometri aliran dan disahkan dengan pencirian stomata. Dua penerimaan tetraploid rosewood diperoleh daripada rawatan oryzalin 15 µM selama 12 dan 24 jam perendaman, manakala tujuh miksoploid diperoleh daripada rawatan 12 jam pada pelbagai kepekatan oryzalin. Anak benih tetraploid yang diinduksi mempunyai stomata yang lebih panjang tetapi kepadatan stomata yang lebih rendah dan daun yang lebih tebal berbanding anak benih diploid. Kedua-dua anak benih tetraploid dan miksoploid yang diinduksi tidak menunjukkan daya vegetatif yang lebih besar berbanding rakan diploid mereka sehingga umur 18 bulan. Oleh itu, poliploidi berhasil diinduksi oleh oryzalin, sama ada mixoploid dan tetraploid, tetapi tidak menghasilkan anak benih rosewood yang tumbuh lebih cepat atau lebih baik berbanding rakan diploidnya, sekurang-kurangnya sehingga usia 18 bulan.

 

Kata kunci: Anak benih; miksoploid; poliploidi; rosewood; tetraploid; tumbuhan rentan

 

REFERENCES

Abdolinejad, R., Shekafandeh, A. & Jowkar, A. 2021. In vitro tetraploidy induction creates enhancements in morphological, physiological and phytochemical characteristics in the fig tree (Ficus carica L.). Plant Physiology and Biochemistry 166: 191-202.

Adinugraha, H.A., Windyarini, E., Hasnah, T.M., Priyanto, A., Firdaus, H. & Leksono, B. 2021. The growth of Calophyllum inophyllum scions taken from provenance seed stand in Wonogiri, Central Java. Jurnal WASIAN 8(1): 1-9.

Arunkumar, A.N., Warrier, R.R., Kher, M.M. & Teixeira da Silva, J.A. 2022. Indian rosewood (Dalbergia latifolia Roxb.): Biology, utilisation, and conservation practices. Trees 36(3): 883-898.

Bakry, F., De La Reberdiere, N.P., Pichot, S. & Jenny, C. 2007. In liquid medium colchicine treatment induces non chimerical doubled-diploids in a wide range of mono-and interspecific diploid banana clones. Fruits 62(1): 3-12.

Bharati, R., Fernández-Cusimamani, E., Gupta, A., Novy, P., Moses, O., Severová, L. & Šrédl, K. 2023. Oryzalin induces polyploidy with superior morphology and increased levels of essential oil production in Mentha spicataL. Industrial Crops and Products 198: 116683.

Chen, S., Zhang, Y., Zhang, T., Zhan, D., Pang, Z., Zhao, J. & Zhang, J. 2022. Comparative transcriptomic, anatomical and phytohormone analyses provide new insights into hormone-mediated tetraploid dwarfing in hybrid sweetgum (Liquidambar styraciflua × L. formosana). Front. Plant Science 13: 924044.

CITES. 2017. Notification to the Parties. https://cites.org/sites/default/files/notif/E-Notif-2017-010.pdf. Accessed on 3 February 2024.

de Moura, L.C., Xavier, A., Viccini, L.F., Batista, D.S., de Matos, E.M., Gallo, R. & Otoni, W.C. 2020. Induction and evaluation of tetraploid plants of 'Eucalyptus urophylla' clones. Australian Journal of Crop Science 14(11): 1786-1793.

Dhooghe, E., Denis, S., Eeckhaut, T., Reheul, D. & Van Labeke, M-C. 2009. In vitro induction of tetraploids in ornamental Ranunculus. Euphytica 168: 33-40.

Diallo, A.M., Kjaer, E.D., Nielsen, I.R. & Ræbild, A. 2022. Response of di- and tetraploid Acacia senegal (L.) Willd. seedlings to salt stress. https://dx.doi.org/10.2139/ssrn.4272536

Diallo, A., Gbeassor, M., Vovor, A., Eklu-Gadegbeku, K., Aklikokou, K., Agbonon, A., Abena, A.A., de Souza, C. & Akpagana, K. 2008. Effect of Tectona grandis on phenylhydrazine-induced anaemia in rats. Fitoterapia 79(5): 332-336.

Dong, R., Pei, Y., Hong, L., Nie, J., Chen, Y., Yan, H. & Liu, Y. 2023. Tetraploid induction identification and transcriptome preliminary analysis of black currant (Ribes rubrum L.). Plant Cell, Tissue and Organ Culture (PCTOC) 155(3): 861-872.

Dushimimana, C., Van Laere, K., Magomere, T., Smagghe, G. & Werbrouck, S.P. 2023. Production of tetraploid plants from cotyledons of diploid Melia volkensii Gürke. Horticulturae 9(7): 791.

Fernando, S.C., Goodger, J.Q., Chew, B.L., Cohen, T.J. & Woodrow, I.E. 2019. Induction and characterisation of tetraploidy in Eucalyptus polybractea RT Baker. Industrial Crops and Products 140: 111633.

Gallone, A., Hunter, A. & Douglas, G.C. 2014. Polyploid induction in vitro using colchicine and oryzalin on Hebe ‘Oratia Beauty’: Production and characterization of the vegetative traits. Scientia Horticulturae 179: 59-66.

Ganga, M. & Chezhiyan, N. 2002. Influence of the antimitotic agents colchicine and oryzalin on in vitro regeneration and chromosome doubling of diploid bananas (Musa spp.). The Journal of Horticultural Science and Biotechnology 77(5): 572-575.

Griffin, A.R., Twayi, H., Braunstein, R., Downes, G.M., Son, D.H. & Harwood, C.E. 2014. A comparison of fibre and pulp properties of diploid and Tetraploid Acacia Mangium grown in Vietnam. Appita 67(1): 43-49.

Handayani, T., Prawestri, A.D., Rahayu, R.S. & Leksonowati, A. 2023. Oryzalin-induced taro (Colocasia esculenta L.) tetraploid and diploid assessment for growth and agronomic traits. SABRAO Journal of Breeding and Genetics 55(1): 163-174.

Hu, Y., Sun, D., Hu, H., Zuo, X., Xia, T. & Xie, J. 2021. A comparative study on morphological and fruit quality traits of diploid and polyploid carambola (Averrhoa carambola L.) genotypes. Scientia Horticulturae 277: 109843.

Joker, D. 2004. Seed leaflet: Dalbergia latifolia Roxb. Forest & Landscape Denmark. http://dfsc.dk/pdf/Seedleaflets/Dalbergia_latifolia_90.pdf. Accessed on 9 February 2024.

Kanchanapoom, K. & Koarapatchaikul, K. 2012. In vitro induction of tetraploid plants from callus cultures of diploid bananas (Musa acuminata, AA group) ‘Kluai Leb Mu Nang’ and ‘Kluai Sa.’ Euphytica 183(1): 111-117.

Kang, X. 2020. Research progress of forest genetics and tree breeding. Journal of Nanjing Forestry University 44(3): 1-10.

Kementerian Kehutanan dan Lingkungan Hidup. 2017. Peraturan terbaru peredaran kayu sonokeling (Dalbergia latifolia) dalam negeri dan luar negeri. http://ksdae.menlhk.go.id/. Accessed on 9 February 2024.

Kertadikara, A. & Prat, D. 1995. Genetic structure and mating system in teak (Tectona grandis L.f.) provenances. Silvae Genetica 44: 104-110.

Kim, H.E., Han, J.E., Lee, H., Kim, J.H., Kim, H.H., Lee, K.Y., Shin, J.H., Kim, H.K. & Park, S.Y. 2021. Tetraploidization increases the contents of functional metabolites in Cnidium officinale. Agronomy 11(8): 1561.

Kumar, V., Kumar, S., Jha, S. & Jijeesh, X. 2014. Infuence of de-oiled seed cakes on seedling performance of East Indian rosewood (Dalbergia latifoila Roxb.). Soil and Environment 33(2): 169-174.

Kunwar, S., Meyering, B., Grosser, J., Gmitter Jr., F.G., Castle, W.S. & Albrecht, U. 2023. Field performance of ‘Valencia’ orange trees on diploid and tetraploid rootstocks in different huanglongbing-endemic growing environments. Scientia Horticulturae 309: 111635.

Kurtz, L.E., Brand, M.H. & Lubell-Brand, J.D. 2020. Production of tetraploid and triploid hemp. HortScience 55(10): 1703-1707.

Kusumadewi, Y., Susila, Rachmat, H.H., Dwiyanti, F.G., Atikah, T.D., Subiakto, A., Pratama, B., Setyawati, T., Wardani, W., Fambayun, R.A., Arrofaha, N. & Kamal, I. 2022. Population genetic of the Indonesian rosewood (Dalbergia latifolia) from Java and West Nusa Tenggara revealed using sequence-related amplified polymorphism. Forest Science and Technology 18(4): 172-181.

Lakhey, P., Pathak, J. & Adhikari, B. 2020. Dalbergia latifolia. The IUCN Red List of Threatened Species.

Lam, H.K., Harbard, J. & Koutoulis, A. 2014. Tetraploid induction of Acacia crassicarpa using colchicine and oryzalin. Journal of Tropical Forest Science 26(3): 347-354.

Lan, M.O., Chen, J.H., Fei, C., Xu, Q.W., Tong, Z.K., Huang, H.H., Dong, R.H., Lou, X.Z. & Lin, E.P. 2020. Induction and characterization of polyploids from seeds of Rhododendron fortunei Lindl. Journal of Integrative Agriculture 19(8): 2016-2026.

Li, W., Zhang, Q., Wang, S., Langham, M.A., Singh, D., Bowden, R.L. & Xu, S.S. 2019. Development and characterization of wheat–sea wheatgrass (Thinopyrum junceiforme) amphiploids for biotic stress resistance and abiotic stress tolerance. Theoretical and Applied Genetics 132(1): 163-175.

Li, X., Zhang, Z., Ren, Y., Feng, Y., Guo, Q., Dong, L., Sun, Y. & Li, Y. 2021. Induction and early identification of tetraploid black locust by hypocotyl in vitro. In Vitro Cellular & Developmental Biology-Plant 57: 372-379.

Liu, Z., Wang, J., Qiu, B., Ma, Z., Lu, T., Kang, X. & Yang, J. 2022. Induction and characterization of tetraploid through zygotic chromosome doubling in Eucalyptus urophylla. Frontiers in Plant Science 13: 870698.

Longui, E.L., Custódio, G.H., Amorim, E.P., da Silva Jr., F.G., Oda, S. & Souza, I.C.G. 2021. Differences in wood properties among Eucalyptus grandis and Eucalyptus grandis × Eucalyptus urophylla with different degrees of ploidy. Research, Society and Development 10(16): e395101624035.

Navrátilová, B., Švécarová, M., Bednář, J. & Ondřej, V. 2021. In vitro polyploidization of Thymus vulgaris L. and its effect on composition of essential oils. Agronomy 11(3): 596-607.

Othmani, A., Jemni, M., Leus, L., Sellemi, A., Artés, F. & Werbrouck, S. 2020. A ploidy chimera reveals the effects of tetraploidy in date palm. European Journal of Horticultural Science 85(3): 137-144.

Parson, J.L., Martin, S.L., Golenia, G. & James, T. 2019. Polyploidization for the genetic improvement of Cannabis sativa. Frontier Plant Science 10: 476.

Petersen, K.K., Hagberg, P. & Kristiansen, K. 2003. Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell, Tissue and Organ Culture 73: 137-146.

Podwyszyńska, M., Markiewicz, M., Broniarek-Niemiec, A., Matysiak, B. & Marasek-Ciolakowska, A. 2021. Apple autotetraploids with enhanced resistance to apple scab (Venturia inaequalis) due to genome duplication-phenotypic and genetic evaluation. International Journal of Molecular Sciences 22(2): 527.

Poerba, Y., Martanti, D., Handayani, T. & Witjaksono. 2019a. Morphology and reproductive function of induced autotetraploi banana by chromosome doubling. SABRAO Journal of Breeding and Genetics 51(2): 175-190.

Poerba, Y.S., Martanti, D., Handayani, T. & Witjaksono. 2019b. Induction of banana autotetraploidsKlutuk Sukun” and their reproductive function for producing triploid hybrids. Asian Journal of Plant Sciences 18(2): 91-100.

Poerba, Y.S., Ahmad, F., Witjaksono & Handayani, T. 2014. Induction and characterization of tetraploid pisang mas lumut. Journal Biologi Indonesia 10(2): 191-200.

Prawirohatmodjo, S., Suranto, J., Martawijaya, A., den Outer, R.W. & Sosef, M.S.M. 1994. Plant Resources of South-East Asia. Timber Trees: Major Commercial Timbers. Bogor: PROSEA.

Rahmi, P., Witjaksono & Ratnadewi, D. 2019. Induksi poliploidi tanaman kangkung (Ipomoea aquatica Forssk.) kultivar Salina in vitro dengan oryzalin. Jurnal Biologi Indonesia 15(1): 1-8.

Ramulu, K., Verhoeven, H.A. & Dijkhuis, P. 1991. Mitotic blocking, micronucleation, and chromosome doubling by oryzalin, amiprophos-methyl, and colchicine in potato. Protoplasma 160: 65-71.

Ren, Y., Jing, Y. & Kang, X. 2021. In vitro induction of tetraploid and resulting trait variation in Populus alba× Populus glandulosa clone 84 K. Plant Cell, Tissue and Organ 146: 285-296.

Ren, Y., Zhang, S., Xu, T. & Kang, X. 2022. Morphological, transcriptome, and hormone analysis of dwarfism in tetraploids of Populus alba × P. glandulosa. International Journal of Molecular Sciences 23(17): 9762.

Riastiwi, I., Prawestri, A.D., Ridwan & Damayanto, I.P.G.P. 2023. Viability of Moringa oleifera seeds stored at different temperatures and recent status of Moringa oleifera collections in seed banks worldwide. Journal of Applied Botany and Food Quality 96: 67-74.

Riastiwi, I., Witjaksono, Ratnadewi, D. & Siregar, U.J. 2022. Genetic diversity of rosewood (Dalbergia latifolia) in Yogyakarta, Indonesia for plus trees selection. Biodiversitas Journal of Biological Diversity 23(5): 2630-2639.

Ridwan & Witjaksono. 2020. Induction of autotetraploid moringa plant (Moringa oleifera) using oryzalin. Biodiversitas Journal of Biological Diversity 21(9): 4086-4093.

Ridwan, Handayani, T., Riastiwi, I. & Witjaksono. 2018. Tetraploid teak seedling was more tolerant to drought stress than its diploid seedling. Jurnal Penelitian Kehutanan Wallacea 7(1): 1-11.

Talebi, S.F., Saharkhiz, M.J., Kermani, M.J., Sharafi, Y. & Fard, F.R. 2017. Effect of different antimitotic agents on polyploidy induction of anise hyssop (Agastache foeniculum L.). Caryologia 70(2): 184-193.

Tel-Zur, N., Mizrahi, Y., Cisneros, A., Mouyal, J., Schneider, B. & Doyle, J.J. 2011. Phenotypic and genomic characterization of vine cactus collection (Cactaceae). Genetic Resources and Crop Evolution 58: 1075-1085.

Van Duren, M., Morpurgo, R., Dolezel, J. & Afza, R. 1996. Induction and verification of autotetraploids in diploid banana (Musa acuminata) by in vitro techniques. Euphytica 88(1): 25-34.

Vasudevan, R., Sasidharan, K.R., Venkataramanan, K.S., Thangamani, D. & Sivanantham, S. 2020. Standardization of macropropagation technique for Dalbergia latifolia Roxb. through root cuttings, its application in production of quality planting stock and conservation of genetic resources. International Journal of Advanced Research and Review 5(11): 9-19.

Wang, L.J., Zhang, Q., Cao, Q. Z., Gao, X. & Jia, G.X. 2020. An efficient method for inducing multiple genotypes of tetraploids Lilium rosthornii Diels. Plant Cell, Tissue and Organ Culture 141: 499-510.

Wang, X., Cheng, Z.M., Zhi, S. & Xu, F. 2016. Breeding triploid plants: A review. Czech Journal of Genetics and Plant Breeding 52(2): 41-54.

Wu, J., Zhou, Q., Sang, Y., Zhao, Y., Kong, B., Li, L., Du, J., Ma, L., Lu, M. & Zhang, P. 2023. In vitro induction of tetraploidy and its effects on phenotypic variations in Populus hopeiensis. BMC Plant Biology 23: 557.

Xu, C., Zhang, Y., Han, Q. & Kang, X. 2020. Molecular mechanism of slow vegetative growth in populus tetraploid. Genes 11(12): 1417.

Xu, J., Jin, J., Zhao, H. & Li, K. 2019. Drought stress tolerance analysis of Populus ussuriensis clones with different ploidies. Journal of Forestry Research 30(4): 1267-1275.

Zhang, X. & Gao, J. 2020. In vitro tetraploid induction from multigenotype protocorms and tetraploid regeneration in Dendrobium officinale. Plant Cell, Tissue and Organ Culture 141: 289-298.

Zhang, X., Chen, K., Wang, W., Liu, G., Yang, C. & Jiang, J. 2022. Differences in leaf morphology and related gene expression between diploid and tetraploid birch (Betula pendula). International Journal of Molecular Sciences 23(21): 12966.

Zhang, Z., Zhang, Y., Di, Z., Zhang, R., Mu, Y., Sun, T., Tian, Z., Lu, Y. & Zheng, J. 2023. Tetraploid induction with leaf morphology and sunburn variation in Sorbus pohuashanensis (Hance) Hedl. Forests 14(8): 1589.

 

*Corresponding author; email: dratnadewi@apps.ipb.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next